

# **Directing the Orientation of Nanoplate Particles Using Block Copolymer Domains to Control the Properties of Thin-Film Polymer Nanocomposites** <u>Nadia M. Krook<sup>1</sup>, Robert A. Riggleman<sup>2</sup>, Manuel Maréchal<sup>3</sup>, Patrice Rannou<sup>3</sup>, Christopher B. Murray<sup>1,4</sup>, Russell J. Composto<sup>1,2,5</sup></u>



demonstrate particle dispersion in homopolymer matrices

IV. Incorporate chemically modified nanoplates first in parallel microdomains

Employ block copolymer (BCP) templates to create *self-assembled* thin film PNCs with vertically oriented anisotropic NPs to improve out-of-plane transport

## Goal I: Synthesis of GdF<sub>3</sub> Nanoplate System



Synthesized via rapid thermal decomposition<sup>5</sup>

- Rigid, monodisperse, and tunable in size and shape
- Model nanoplate system
- Thickness of ~3 nm
- Oleic acid (OA) on particle surfaces

### Goal II: Vertical PS-b-PMMA Lamellae



Department of Materials Science and Engineering, University of Pennsylvania<sup>1</sup>; UMR5819-SyMMES (CEA, CNRS, University Grenoble Alpes), F-38000 Grenoble, France; Department of Chemical and Biomolecular Engineering, University of Pennsylvania<sup>2</sup>; Department of Chemistry, University of Pennsylvania<sup>4</sup>; Department of Bioengineering, University of Pennsylvania<sup>5</sup>

## Goal II: Vertically Oriented PS-b-PMMA (54k-b-52k g/mol) Lamellae via a Neutralization Layer

#### Without neutralization layer, PMMA preferentially wets silicon leading to lamellae oriented parallel to the substrate.



TEM image of ultramicrotomed cross section of parallel PS-b-PMMA (38k-b-36.8k g/mol) lamellar film



## Goal III, Method 1: $BF_4$ Stabilized GdF<sub>3</sub> Nanoplates Dispersed in PMMA



Charge stabilized GdF<sub>3</sub> results in particle aggregation in polymer matrix; As particle weight fraction increases, number of particles per cluster increases

## Goal III, Method 2: PEG-PO<sub>3</sub>H<sub>2</sub> Functionalized GdF<sub>3</sub> Nanoplates Dispersed in PMMA



Goal IV: Alignment of GdF<sub>3</sub> in PMMA Domain of Parallel PS-*b*-PMMA (38k-*b*-36.8k g/mol) Lamellae



• Implemented a slightly asymmetric BCP compared to symmetric system used by Ji et al. (52k-b-52k g/mol) • Achieved vertical ordering for film thicknesses ranging from ~50 nm to ~160 nm Varied ratio of the homopolymer brushes in neutrality layer underneath PS-b-PMMA films (~54 nm)



Shift in neutrality window to adjust for higher styrene content in asymmetric BCP

• Cleaved OA from as-synthesized GdF<sub>3</sub> platelets using nitrosonium tetrafluoroborate (NOBF<sub>4</sub>) salt<sup>7</sup> • Dispersed charge-stabilized  $GdF_3$  in  $M_n = 212$  kg/mol poly(methyl methacrylate) (PMMA) • Spin-coated  $GdF_3$ /PMMA composites (~36 nm) as a function of particle wt%



Good dispersion of  $M_n = 5 \text{ kg/mol PO}_3H_2$ -poly(ethylene glycol) (PEG) modified GdF<sub>3</sub> achieved in PMMA independent of molecular weight 20 kg/mol PMMA 77 kg/mol PMMA

| 0 wt% GdF <sub>3</sub> | <u>о.2 um</u><br>30 wt% GdF <sub>3</sub> | ر<br>۱0 wt% GdF <sub>3</sub> | <u>معنائع 30 wt% GdF</u> 3 |
|------------------------|------------------------------------------|------------------------------|----------------------------|
| nickness: 85 nm        | Film Thickness: 102 nm                   | Film Thickness: 94 nm        | Film Thickness: 120 nm     |
|                        | <u>0:2 um</u>                            | <u>012 Luti</u>              | <u>u 2 um</u>              |
| ) wt% GdF <sub>3</sub> | 60 wt% $GdF_3$                           | 40 wt% $GdF_3$               | 60 wt% $GdF_3$             |
| ickness: 120 nm        | Film Thickness: 156 nm                   | Film Thickness: 130 nm       | Film Thickness: 177 nm     |



- 5 kg/mol PEG-PO<sub>3</sub>H<sub>2</sub> functionalized GdF<sub>3</sub> preferentially segregate to PMMA domain
- Nanoplate alignment occurs up to 15 wt%
- GdF<sub>3</sub> orientation and **BCP** formation becomes disordered after 20 wt%

## Conclusions

Surface-modifiable, monodisperse  $GdF_3$  nanoplates were synthesized and compatible with lamellae dimensions

Without substrate modification, parallel PS-*b*-PMMA lamellae can be achieved Perpendicular PS-*b*-PMMA lamellae can be achieved with substrate

modification for thin-film thicknesses ranging from ~50 nm to ~160 nm  $BF_4$  stabilized particles disperse in PMMA (212 kg/mol) up to 10 wt% GdF<sub>3</sub>

PEG-PO<sub>3</sub>H<sub>2</sub> functionalized GdF<sub>3</sub> plates disperse in PMMA matrices of varying molecular weights independent of particle loading

GdF<sub>3</sub> plates demonstrate directed alignment up to 15 wt% in the PMMA domain of parallel PS-b-PMMA lamellae

### **Future Work** thickness: ~3 nm domain period: ~25 nm thin-film PNCs with vertically chemically-specific perpendicularly oriented PS-b-PMMA lamellae oriented nanoplates GdF<sub>3</sub> nanoplates Explore the optimum parameter space for BCP molecular weight, nanoplate size and surface chemistry, and film thickness Guide studies with simulations performed in the Riggleman group Can we establish a platform to align any planar particle in systems of technological relevance? Can we use BCPs as a platform to control Parallel PS-b-PMMA lamellae $D_{0} \sim 18 \ nm$ placement and separation

of any particle system? Goal: develop flexible PNC coating with plasmor

enhanced upconversion luminescence

5 kg/mol PEG-PO<sub>3</sub>H<sub>2</sub> functionalized NaYF<sub>4</sub>:Yb/Er UCNPs  $D \sim 15 nm$ D ~ 15 nm 3 kg/mol PS-SH

Au NPs *D ~ 6.0 nm* WWW JUNN SALA

![](_page_0_Picture_55.jpeg)

## Acknowledgements

This work was supported by the National Science Foundation with primary support from the Polymer (DMR15-07713), PIRE (OISE-1545884), and MRSEC (DMR11-20901) programs. The authors recognize Davit Jishkariani for designing and providing the dendrimer used for the direct ligand exchange study. Additionally, the authors would like to acknowledge Robert Ferrier, Jamie Ford, Jason Koski, Hyun-Su Lee, Ben Lindsay, Stan Najmr, Emmabeth Parrish, Boris Rasin, and Douglas Yates for scientific discussions.

## References

<sup>1</sup>Wang et al. Cryst. Eng. Comm. **2015**, 17, (15), 2964-2968. <sup>2</sup> Ferrier *et al. Macromolecules* **2016**, *49* (3), 1002-1015. <sup>3</sup> Tyan et al. Chem. Mater. **1999**, *11* (7), 1942-1947. <sup>4</sup> Yamamoto et al. Proceedings of JIEF Meeting **2009**, 23, 46-47. <sup>5</sup> Paik et al. ACS Nano **2011**, 5 (10), 8322-8330. <sup>6</sup> Ji et al. Advanced Materials **2008**, 20 (16), 3054-3060. <sup>7</sup> Dong *et al. JACS* **2010**, *133*(4), 998-1006. <sup>8</sup> Jishkariani *et al. Dendritic Effect and Magnetic Permeability in Dendronized* Magnetic Nanocrystals. 2017, Submitted.

## **Contact Information**

Nadia M. Krook nkrook@seas.upenn.edu